A ¹H NMR Study on the Electronic State of a Chloride-bridged Tetrakis(acetamidato)dirhodium Complex

Miho Yamauchi,* Yasuaki Takazaki,[†] Zhiyong Yang,[†] Takashi Kawamura,[†] and Ryuichi Ikeda Department of Chemistry, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571 [†]Department of Chemistry, Faculty of Engineering Gifu University, Gifu 501-1193

(Received July 22, 2003; CL-030663)

A temperature dependence of ¹H NMR spin-lattice relaxation time in a zig-zag chain of chloride-bridged tetrakis(acetamidato)dirhodium was measured. The observed ¹H relaxation was well explained by the fluctuation of the magnetic dipolar interaction between proton and paramagnetic electron spins, where each unpaired spin is coupled by the one-dimensional antiferromagnetic interaction above 35 K. The slight change of the electronic state in the Rh dimer was observed below 35 K.

Halide-bridged one-dimensional (1-D) chains of binuclearmetal complexes (MMX chains) composed of metal dimers such as Ni₂, Pd₂, Pt₂, show various kinds of electronic states. According to the ordering of charges and spins, four kinds of electronic states are proposed, e.g., the averaged-valence state, the chargedensity-wave (CDW) state, the charge-polarization state, and the alternate charge-polarization state.¹

Recently, 1-D chains of halide-bridged Rh₂ complexes $[Rh_2(acam)_4X]_n$ (Hacam = acetamide, X = Cl, Br, and I) have been synthesized.² Rh₂ units are connected by a halide ion and arranged to a zig-zag structure, as shown in Figure 1. The fact that a crystallographically unique Rh atom can be seen in the crystal structure at 193 K² suggests that Rh₂⁵⁺ units are in an averaged-valence state at high temperatures, i.e., the unpaired spin is delocalized in a dimer, and each Rh seems to have the same charge of +2.5. Moreover, the unpaired spin is found to be in the δ^*_{RhRh} SOMO orbital in the Rh₂ complexes,^{2,3} while the HOMO is the σ_{MM} orbital in other MMX chains of Ni₂, Pd₂, and Pt₂. Therefore, the 1-D electronic state of Rh₂ complexes is expected to show unique characteristics in the charge ordering and spin-spin interactions due to some differences of a symmetry of the SOMO orbital and the structure of the Rh₂ complex from those of other MMX complexes.

In the present study, we measured the ¹H NMR spin–lattice relaxation time to reveal the 1-D spin structure in the zig-zag chain of the chloride-bridged Rh₂ complex.

The 1-D chain of chloride-bridged tetrakis(acetamidato)dirhodium was prepared according to the literature.² The temperature dependence of ¹H NMR spin–lattice relaxation time (T_1) was measured with a homemade apparatus⁴ using the π - τ - π /2

Figure 1. The 1-D chain structure of chloride-bridged tetrakis-(acetamidato)dirhodium.

Figure 2. The ¹H NMR magnetization recoveries at a delay time τ after $\pi/2$ pulse at 200 K (a) and 30 K (b). Fitted curves are shown by solid lines.

pulse sequence in the temperature region of 4–300 K. A Larmor frequency of 53.1 MHz was employed. The sample temperature was controlled by a Chino SU10-2121LNN temperature controller and measured with a chromel-constant thermocouple within ± 1 K.

¹H magnetization recoveries after a $\pi/2$ pulse are shown in Figure 2. The recovery above 35 K could be fitted with a single exponential curve as shown in Figure 2a, indicating that all protons are relaxed through a single process. On the other hand, a rapidly relaxing portion became distinguishable below 35 K, and the recovery curve was reproduced with a superposition of two kinds of single exponential curves as shown in Figure 2b. The existence of two T_1 components suggests two kinds of protons under different circumstance. Below 12 K, the recovery could not be fitted with a double-exponential curve.

The temperature dependence of ¹H NMR T_1 was plotted in Figure 3. The constant T_1 value of 3 ± 1 ms was obtained in the temperature region of 35–300 K. From the previous report,² the temperature dependence of the magnetic susceptibility for this complex could be expressed by the antiferromagnetic 1-D Heisenberg model with J = -4.3 K ($\mathcal{H} = -2J\Sigma S_i S_{i+1}$). According to this spin structure, we assume that the ¹H relaxation in this temperature range is caused by a fluctuation of the magnetic dipolar interaction between proton and paramagnetic electron spins. If conditions of $\omega_1 \tau_c \ll 1$ and $\omega_S \tau_c \ll 1$ are fulfilled where ω_I and ω_S are nuclear and electronic angular Larmor fre-

110

Figure 3. The temperature dependence of ¹H spin–lattice relaxation time (T_1) measured at 53.1 MHz. Long and short T_1 components are shown as \bullet and \bigcirc , respectively.

quencies, respectively, and τ_c is the electron spin correlation time, T_1 can be expressed as⁵

$$T_1^{-1} \approx \sum_i \frac{20}{15} \frac{\gamma_1^2 g^2 \mu_B^2 S(S+1)}{r_i^6} \tau_c \tag{1}$$

where γ_{I} , g, μ_{B} , S, and r_{i} are the gyromagnetic ratio of a proton, the g factor, the Bohr magneton, the effective electron spin and the distance from a paramagnetic electron to a proton, respectively. τ_{c} is given by

$$\tau_{\rm c}^{-1} = T_{\rm 1e}^{-1} + \tau_{\rm f}^{-1} \tag{2}$$

where T_{1e} and τ_{f} denote the electron spin–lattice relaxation time and the correlation time for electron spin flips, respectively. Since T_{1e} is generally temperature dependent, while τ_{f} is independent, we can approximately write $\tau_{c} = \tau_{f}$ above 35 K, because almost temperature independent T_{1} values were obtained in this range. According to Moriya,⁶ the electron spin exchange frequency ω_{ex} is expressed as

$$\omega_{\rm ex}^2 = \frac{2}{3} \frac{J^2}{\hbar^2} z S(S+1)$$
(3)

and

$$\omega_{\rm ex}^2 = \frac{\pi}{2\tau_{\rm f}^2} \tag{4}$$

where z is the number of the nearest neighbors of a paramagnetic spin; in this 1-D system, z = 2. Since the right-hand side except τ_c in Eq 1 can be calculated by using crystal data,² we can get a relation between ¹H T_1 and J values. We assume that the spin

density is a half on each Rh, and two protonic sites at NH and CH₃ groups in ligands afford the same averaged T_1 value because almost a single T_1 was determined above ca. 35 K. By using J = -4.3 K estimated for this complex, T_1 value was calculated to be 4 ms in good agreement with observed T_1 above 35 K. This result indicates that the antiferromagnetic 1-D spin structure in this complex mainly governs the ¹H relaxation.

Below 35 K, both long and short T_1 values increased upon cooling. The T_1 increases suggest that the exchange interaction becomes comparable to the thermal energy in this temperature range and the short-range ordering of antiferromagnetically coupled spins takes place.

The presence of two T_1 components and the short T_1 value less than ca. 4 ms, however, cannot be explained by the magnetic dipolar interaction in the averaged-valence state of the Rh dimer. In ESR measurement, we recently observed unusual change in the spectral line-width below ca. 50 K. The ESR spectrum at room temperature showed a broad single-line with a peak-topeak line-width of 122 ± 2 mT. With reducing temperature, the line-width was decreased, and a spectral structure with an anisotropic g factor was observed below ca. 120 K.² On the other hand, the spectrum was broadened, and its structure was disappeared below 50 K. At 28 ± 1 K, the single-line with the peakto-peak width of $50 \pm 2 \,\text{mT}$ was obtained. Below 28 K, the spectra became to be sharpened again. The line broadening observed below 50 K is probably attributed to rapid electronic relaxation due to spin fluctuation for some reconstruction of electronic state in the zig-zag chain, which was also observed by ¹H NMR. The detailed analysis of ESR spectra is currently under way.

Since no marked change in the magnetic susceptibility was reported below 50 K,² the antiferromagnetic 1-D spin structure itself seems to be maintained, it can be said that local electronic state in the Rh dimer was slightly changed in this temperature range. Detailed studies on the 1-D electronic structure below 50 K are in progress.

References

- H. Kitagawa, N. Onodera, T. Sonoyama, M. Yamamoto, T. Fukuwa, T. Mitani, M. Seto, and Y. Maeda, *J. Am. Chem. Soc.*, **121**, 10068 (1999).
- 2 Z. Yang, M. Ebihara, T. Kawamura, T. Okubo, and T. Mitani, *Inorg. Chim. Acta*, **321**, 97 (2001).
- 3 T. Kawamura, K. Fukamachi, T. Sowa, S. Hayashida, and T. Yonezawa, J. Am. Chem. Soc., **103**, 364 (1981).
- 4 T. Kobayashi, H. Ohki, and R. Ikeda, *Mol. Cryst. Liq. Cryst.*, **257**, 279 (1994).
- 5 H. Rarger, Z. Naturforsch., 36a, 637 (1981).
- 6 T. Moriya, Prog. Theor. Phys., 16, 23 (1956).